DRAFT

Identification of river herring hotspots at sea using multiple fishery dependent and independent datasets

Prepared for the Atlantic Herring PDT

by

Jamie Cournane¹

Steven Correia²

¹University of New Hampshire and Environmental Defense Fund ²Massachusetts Division of Marine Fisheries

July 2010

Background

At its May 2010 meeting, the New England Fisheries Management Council Herring Oversight Committee tasked the Plan Development Team (PDT) with identifying river herring hotspots as part of the analysis for Amendment 5 to the Atlantic Herring fishery management plan (FMP). Specifically, one of the objectives for Amendment 5 of the FMP is to address river herring bycatch in the Atlantic herring, *Clupea harengus*, fishery.

Here, the term "river herring" refers to alewife, *Alosa pseudoharengus*, and blueback herring, *Alosa aestivalis*. This analysis combines available data on both species to identify river herring hotspots. Furthermore, this work differs from other studies on the bycatch of river herring in ocean fisheries (Shepherd 1986, Cieri et al. 2008, Wigley et al. 2009) because it incorporates fishery dependent and independent data. The following is a summary of the method and analysis developed by the PDT to identify river herring hotspots.

Study Area

The study area includes the Atlantic herring fishery management plan areas that overlap the Eastern US Continental shelf (Fig. 1).

Datasets and Data Selection

Multiple data sources are used in this analysis to identify river herring hotspots at sea. These sources include fishery dependent (Vessel Trip Reports, VTR and Northeast Fishery Observer Program, NEFOP) and fishery independent (National Marine Fisheries Service, NMFS bottom-trawl surveys) datasets (Tables 1-3). The most recent 5 years (2005-2009) of fishery dependent data and 15 years (1994-2008) of fishery independent are pooled separately by dataset in the analysis.

Data from directed herring trips were selected from VTR and NEFOP databases and grouped by quarter: 1, 2, 3, and 4 (Tables 1 and 2). Here, directed herring trips were defined as 2,000 lbs of kept Atlantic herring on a trip. Data from other non-directed trips is not included in the analysis, but may become the scope of future examination. In addition, fishery dependent data included three broad gear categories: bottom otter-trawl, purse seine, and mid-water trawl (combining single and pair mid-water trawls).

River herring data from observed directed herring trips (NEFOP) were presence/absence and weight (lbs) from each haul or set. Data from the Massachusetts Division of Marine Fisheries and the Maine Department of Marine Resources portside surveys were excluded because spatial information was not available for all years and all trips.

Selected river herring data from NMFS bottom-trawl surveys included presence/absence and the number of individuals found at each sampling location. Surveys were separated by season: winter, spring, and fall (Tables 3 and 4).

Methods

Fishing Effort and River Herring Bycatch

To understand where and when the directed herring fishery operated throughout the fishing year, quarterly maps and tables of the number of trips per statistical area were constructed using VTRs (Figs. 2-5, Appendix Tables A.1-A.4). Fishing effort was approximated by the number of trips within a statistical area. Quarterly maps of fishing effort by statistical areas were color-coded from hot (red) to cool (blue) to identify fishing effort concentration areas.

These maps were overlaid with quarterly NEFOP data on river herring bycatch events from observed hauls and sets. Circles of increasing size represent the magnitude of the bycatch event. These bycatch events were binned into circles of increasing size using all years and quarters combined and then mapped separately by quarter.

Hotspots

Seasonal NMFS bottom-trawl surveys were used to identify river herring "hotspot" areas (Appendix Figure A.1). Analyses for the winter, spring, and fall surveys were conducted separately for two spatial stratification schemes:

- fisheries statistical areas (Fig. 1) and
- survey strata (Appendix Figs. A.2- A.5).

Regardless of the spatial stratification scheme, at least 10 tows per strata were required for inclusion in the analysis. Strata with less than 10 tows were omitted from the analysis.

For each seasonal survey and stratification scheme, two metrics were used to determine hotspots:

- percent occurrence and
- median Q index.

Within each spatial stratum, percent occurrence was defined as the count of tows with river herring present divided by the total tows. For example if for a given area, the number of tows was 100, and out of those 100 tows 66 tows detected river herring. The percent occurrence for that area was 66%. The percent occurrence for each spatial strata was used for ranking.

The Q index standardizes the number of river herring caught per tow to reduce the effect of annual sampling variation and differences in sample size among years. The Q index can be interpreted as reflecting the density of river herring within a given spatial strata. Because the NMFS bottom trawl survey has predefined survey strata, results for the Q index that ignore the survey strata (i.e., results of the Q index for each statistical area) should be interpreted cautiously and may not reflect river herring density in a

given area because such methods violate assumptions of the a priori survey sampling design. The median of the Q-index for each spatial strata was used for ranking hotspots.

The strata for each stratification scheme (i.e., statistical areas or survey strata) were ranked using each metric and recorded in respective tables, plots and maps (Figs.6-8, Appendix Tables A.5-A.10, Figs. A.6- A.14). Maps of ranked areas were color-coded from hot (red) to cool (blue or purple) to identify river herring hotspot areas. These maps were overlaid with quarterly NEFOP data on river herring bycatch from observed hauls and sets based on the timing of the NMFS bottom-trawl surveys (Table 4).

Results

Fishing Effort and River Herring Bycatch

Visual differences in the spatial and temporal distribution of directed herring trips were evident from maps of fishing effort (Figs. 2-5). In general, fishing effort shifted from the northern Mid-Atlantic Bight and southern New England waters in quarter 1 to southern New England waters and the Gulf of Maine in quarter 2 (Figs. 2-3). In quarter 3, fishing effort concentrated in the Gulf of Maine and Georges Bank (Fig. 4). Then during quarter 4, fishing effort spanned the Gulf of Maine and southern New England waters (Fig. 5).

Using NEFOP haul and set data, river herring bycatch events were inspected by quarter. River herring bycatch events in quarter 1 included areas in Ipswich Bay, off the back of Cape Cod, and in the northern Mid-Atlantic Bight (Fig. 2). In quarter 2, river herring bycatch events occurred in the northern Gulf of Maine, off the back of Cape Cod, and the Mid-Atlantic Bight (Fig. 3). In quarter 3, bycatch events included areas in the northern Gulf of Maine (Fig. 4). For quarter 4, bycatch events included the northern Gulf of Maine, Ipswich Bay, Massachusetts Bay, the back of Cape Cod, south of Martha's Vineyard, and near Block Island (Fig. 5).

Hotspots

Results include river herring hotspot areas ranked in tables, plots, and maps:

- percent occurrence by statistical area (Figs. 6-8, Appendix Tables A.5-A.7)
- percent occurrence by survey strata (Appendix Figs. A.6-A.8, Tables A.8-A.10
- median Q index by statistical area (Appendix Figs. A.9-A.11, Tables A.5-A.7)
- median Q index by survey strata (Appendix A.12-A.14, Tables A.8-A.10).

Each of these above combinations produced different hotspot maps. These seasonal maps were overlaid with observed river herring bycatch events by quarters. Although the timing of the quarterly observed river herring bycatch events did not perfectly match the timing of the seasonal NMFS bottom-trawl surveys (Table 4), they could be used to reference identified hotspot areas and in future analysis.

<u>Tables</u>

Q1-4	Ge	ar Categ	ory	
Year	ОТ	PR	PS	ALL
2005	77	774	200	1051
2006	150	739	175	1064
2007	414	389	365	1168
2008	109	304	246	659
2009	203	406	225	834
ALL	953	2612	1211	4776

Q1	Gear Category			_
Year	OT	PR	PS	ALL
2005	14	127	0	141
2006	67	160	0	227
2007	154	176	0	330
2008	63	128	0	191
2009	99	171	0	270
ALL	397	762	0	1159

Q2	Ge			
Year	OT	PR	PS	ALL
2005	8	161	25	194
2006	4	177	27	208
2007	1	105	52	158
2008	0	42	53	95
2009	7	30	53	90
ALL	20	515	210	745

Q3	Ge	ar Categ	ory	_
Year	OT	PR	PS	ALL
2005	16	294	142	452
2006	32	265	136	433
2007	224	7	258	489
2008	23	18	191	232
2009	42	75	156	273
ALL	337	659	883	1879

Q4	Gear Category			_
Year	OT	PR	PS	ALL
2005	39	192	33	264
2006	47	137	12	196
2007	35	101	55	191
2008	23	116	2	141
2009	55	130	16	201
ALL	199	676	118	993

Table 1: Number of directed herring trips separated by gear, year and quarter. Directed herring trips defined as 2,000 lbs of kept Atlantic herring on a trip. Gear categories include bottom otter-trawl (OT), purse seine (PS) and mid-water trawl (PR). Mid-water trawl (PR) refers to pair and single mid-water trawls. Source: Vessel Trip Report Database 2005-2009.

Q1-4	G	ear Categ	ory	
Year	OT	PR	PS	ALL
2005	15	465	95	575
2006	64	120	0	184
2007	59	75	27	161
2008	8	209	69	286
2009	35	437	97	569
ALL	181	1306	288	1775

Q1	Ge	ear Categ	ory	
Year	OT	PR	PS	ALL
2005	0	56	0	56
2006	36	75	0	111
2007	37	35	0	72
2008	4	63	0	67
2009	27	91	0	118
ALL	104	320	0	424

Q2	Gear Category			
Year	OT	PR	PS	ALL
2005	0	65	5	70
2006	0	6	0	6
2007	0	9	0	9
2008	0	50	25	75
2009	0	56	39	95
ALL	0	186	69	255

Q3	Gear Category			
Year	OT	PR	PS	ALL
2005	13	175	75	263
2006	16	28	0	44
2007	11	3	24	38
2008	4	18	38	60
2009	4	122	54	180
ALL	48	346	191	585

Q4 _	Gear Category			_
Year	OT	PR	PS	ALL
2005	2	169	15	186
2006	12	11	0	23
2007	11	28	3	42
2008	0	78	6	84
2009	4	168	4	176
ALL	29	454	28	511

Table 2: Observed hauls from directed herring trips separated by gear, year and quarter. Directed herring trips defined as 2,000 lbs of kept Atlantic herring on a trip. Source: NEFOP Database 2005-2009.

	Season		_
Winter	Spring	Fall	ALL
79	299	288	666
120	288	298	706
114	291	263	668
109	293	287	689
116	321	294	731
121	291	296	708
107	292	294	693
146	280	283	709
138	274	289	701
70	271	281	622
119	285	278	682
82	261	279	622
103	292	306	701
117	316	295	728
	297	306	603
1541	4351	4337	10229
	79 120 114 109 116 121 107 146 138 70 119 82 103 117	Winter Spring 79 299 120 288 114 291 109 293 116 321 121 291 107 292 146 280 138 274 70 271 119 285 82 261 103 292 117 316 297	Winter Spring Fall 79 299 288 120 288 298 114 291 263 109 293 287 116 321 294 121 291 296 107 292 294 146 280 283 138 274 289 70 271 281 119 285 278 82 261 279 103 292 306 117 316 295 297 306

Table 3: Number of tows from seasonal research surveys separated by year and season. Source: NMFS bottom-trawl surveys 1994-2008.

		NMFS	BTS Sea	asons
Month	Fishing Quarter	Winter	Spring	Fall
1	1	16		
2	1	1498	9	
3	1	27	2402	
4	2		1916	
5	2		24	
6	2			
7	3			
8	3			
9	3			2262
10	4			1970
11	4			105
12	4			

Table 4: Number of tows from seasonal research surveys separated month, fishing quarter, and survey season. Note that spring and fall surveys overlap multiple fishing quarters. Source: NMFS bottom-trawl surveys 1994-2008.

Figures

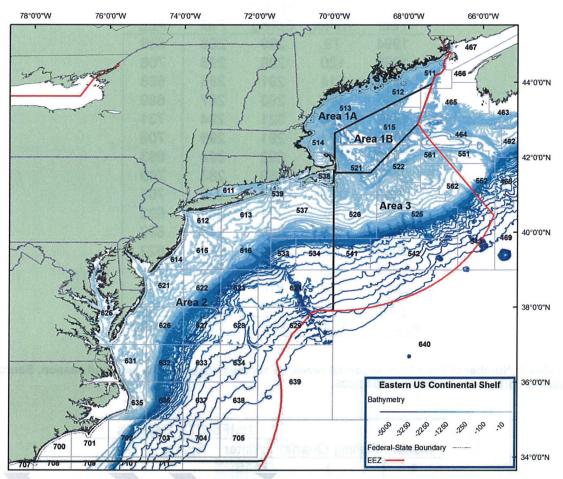


Figure 1: Study area of the Eastern US Continental Shelf. Overlapping Atlantic herring fishery management plan areas (Area 1A, 1B, 2, and 3) and fisheries management statistical areas (400-700s) indicated.

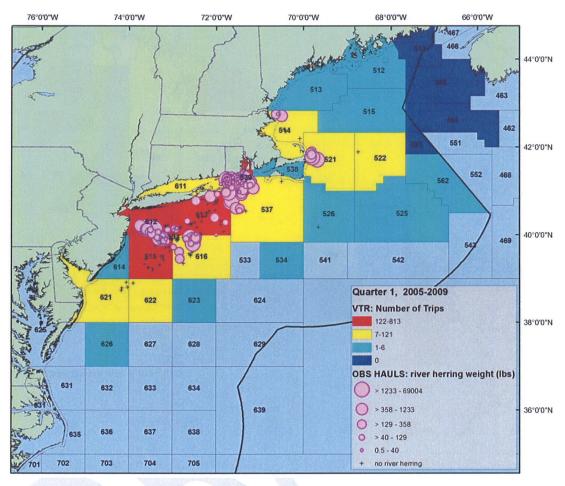


Figure 2: Reported trips (VTR) and observed hauls and sets (OBS HAULS) from quarter 1, 2005-2009 for directed herring trips by bottom otter-trawls, purse seines, and mid-water trawls (single and paired). Trips by statistical area are grouped from 122-813 (red), 7-121 (yellow), 1-6 (aqua), and 0 (dark blue) trips. Scaled pink circles represent river herring bycatch (lbs) in observed hauls and sets for directed herring trips. A "+" signifies that an observed haul or set did not catch river herring. Directed herring trips are defined as 2,000 lbs of kept Atlantic herring on a trip. Sources: VTR Database 2005-2009 and NEFOP Database 2005-2009.

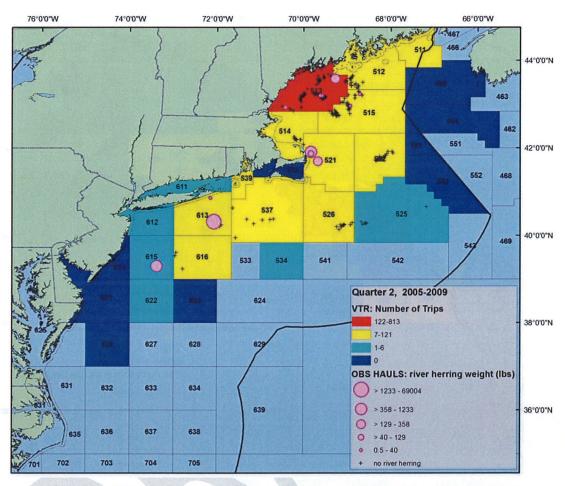


Figure 3: Reported trips (VTR) and observed hauls and sets (OBS HAULS) from quarter 2, 2005-2009 for directed herring trips by bottom otter-trawls, purse seines, and mid-water trawls (single and paired). Trips by statistical area are grouped from 122-813 (red), 7-121 (yellow), 1-6 (aqua), and 0 (dark blue) trips. Scaled pink circles represent river herring bycatch (lbs) in observed hauls and sets for directed herring trips. A "+" signifies that an observed haul or set did not catch river herring. Directed herring trips are defined as 2,000 lbs of kept Atlantic herring on a trip. Sources: VTR Database 2005-2009 and NEFOP Database 2005-2009.

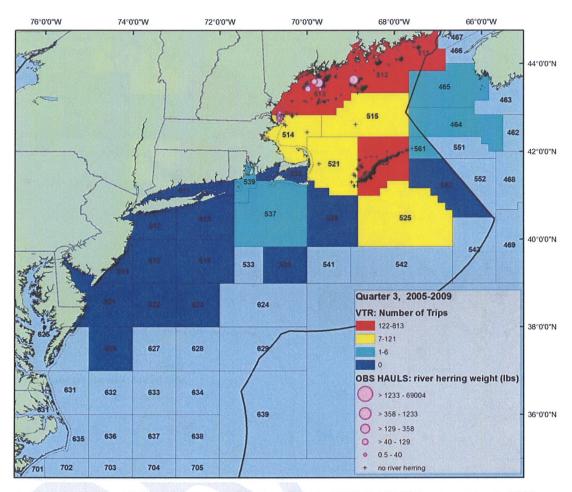


Figure 4: Reported trips (VTR) and observed hauls and sets (OBS HAULS) from quarter 3, 2005-2009 for directed herring trips by bottom otter-trawls, purse seines, and mid-water trawls (single and paired). Trips by statistical area are grouped from 122-813 (red), 7-121 (yellow), 1-6 (aqua), and 0 (dark blue) trips. Scaled pink circles represent river herring bycatch (lbs) in observed hauls and sets for directed herring trips. A "+" signifies that an observed haul or set did not catch river herring. Directed herring trips are defined as 2,000 lbs of kept Atlantic herring on a trip. Sources: VTR Database 2005-2009 and NEFOP Database 2005-2009.

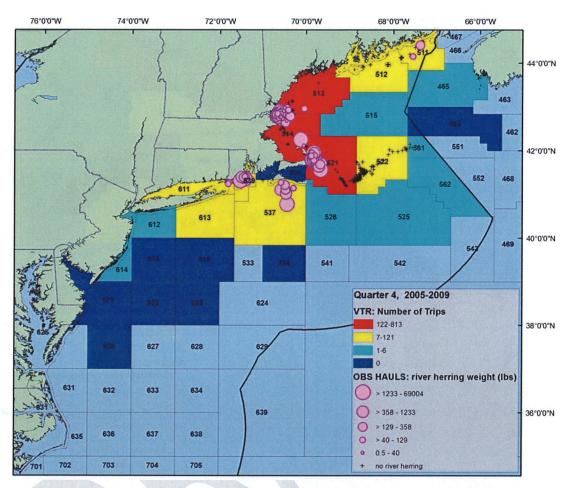


Figure 5: Reported trips (VTR) and observed hauls and sets (OBS HAULS) from quarter 4, 2005-2009 for directed herring trips by bottom otter-trawls, purse seines, and mid-water trawls (single and paired). Trips by statistical area are grouped from 122-813 (red), 7-121 (yellow), 1-6 (aqua), and 0 (dark blue) trips. Scaled pink circles represent river herring bycatch (lbs) in observed hauls and sets for directed herring trips. A "+" signifies that an observed haul or set did not catch river herring. Directed herring trips are defined as 2,000 lbs of kept Atlantic herring on a trip. Sources: VTR Database 2005-2009 and NEFOP Database 2005-2009.

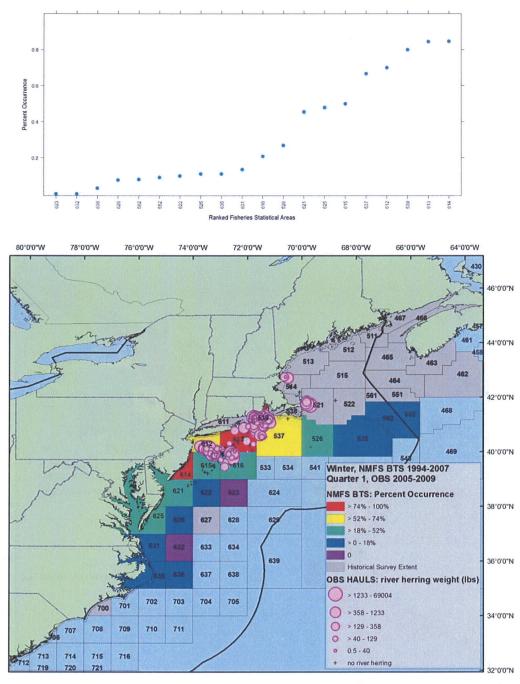


Figure 6: Percent occurrence of river herring in winter research surveys by statistical area ranked from lowest to highest (top). Map of corresponding river herring percent occurrence by statistical area grouped from >74-100% (red), >52-74% (yellow), >18-52% (aqua), >0-18% (dark blue) and 0% (purple) (bottom). Ranks are based on river herring percent occurrence values in the spring research surveys. Scaled pink circles represent river herring bycatch (lbs) in observed hauls and sets from quarter 1 directed herring trips. A "+" signifies that an observed haul or set did not catch river herring. Directed herring trips are defined as 2,000 lbs of kept Atlantic herring on a trip. Sources: NMFS bottom-trawl surveys 1994-2007 and NEFOP Database 2005-2009.

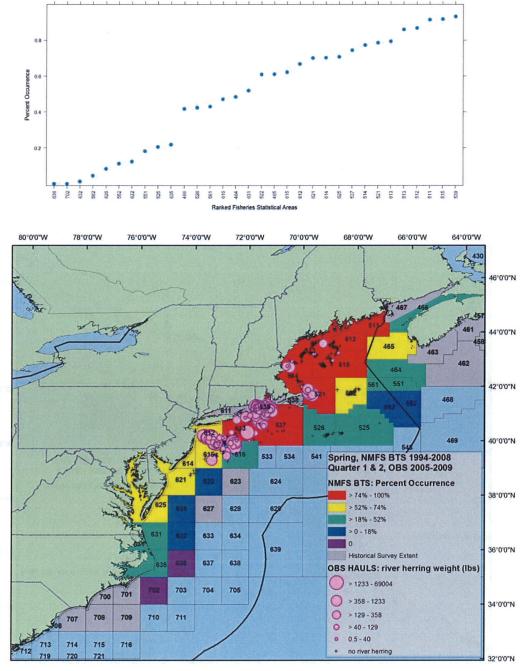
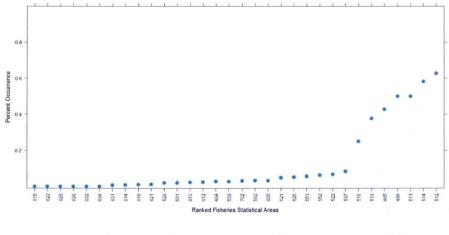



Figure 7: Percent occurrence of river herring in spring research surveys by statistical area ranked from lowest to highest (top). Map of corresponding river herring percent occurrence by statistical area grouped from >74-100% (red), >52-74% (yellow), >18-52% (aqua), >0-18% (dark blue) and 0% (purple) (bottom). Ranks are based on river herring percent occurrence values in the spring research surveys. Scaled pink circles represent river herring bycatch (lbs) in observed hauls and sets from quarter 1 and 2 directed herring trips. A "+" signifies that an observed haul or set did not catch river herring. Directed herring trips are defined as 2,000 lbs of kept Atlantic herring on a trip. Sources: NMFS bottom-trawl surveys 1994-2008 and NEFOP Database 2005-2009.

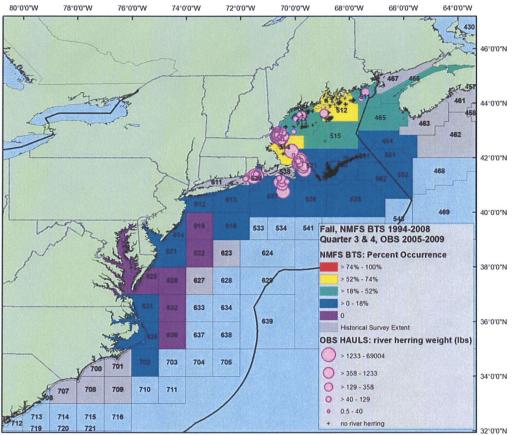


Figure 8: Percent occurrence of river herring in fall research surveys by statistical area ranked from lowest to highest (top). Map of corresponding river herring percent occurrence by statistical area grouped from >74-100% (red), >52-74% (yellow), >18-52% (aqua), >0-18% (dark blue) and 0% (purple) (bottom). Ranks are based on river herring percent occurrence values in the spring research surveys. Scaled pink circles represent river herring bycatch (lbs) in observed hauls and sets from quarter 3 and 4 directed herring trips. A "+" signifies that an observed haul or set did not catch river herring. Directed herring trips are defined as 2,000 lbs of kept Atlantic herring on a trip. Sources: NMFS bottom-trawl surveys 1994-2008 and NEFOP Database 2005-2009.

References

Cieri, M., G. Nelson, and M. A. Armstrong. 2008. *Estimates of river herring bycatch in the directed Atlantic herring fishery*. Report prepared for the Atlantic States Marine Fisheries Commission, Washington, DC. September 23, 2008.

Shepherd, G. 1986. Evaluation of the river herring by-catch in the mackerel fishery. *Woods Hole Laboratory Reference Document* 86-10. US Department of Commerce.

Wigley, S. E., J. Blaylock, P. J. Rago. 2009. River herring discard estimation, precision and sample size analysis. *Northeast Fish Science Center Reference Document* 09-20. US Department of Commerce.

Appendix

Tables

Q1	G	ear Categ	ory	
Statistical Area	OT	PR	PS	ALL
464	0	0	0	0
465	0	0	0	0
511	0	0	0	0
512	0	1	0	1 5 18
513	0	5	0	5
514	0	18	0	
515	0	1	0	1
521	1	23	0	24
522	0	8	0	8
525	0	1	0	1
526	0	1	0	1
534	1	1	0	2
537	56	49	0	105
538	2	2	0	4
539	161	114 0	0	275
561	0	0	0	0 2
562	0	2	0	2
611	80	32	0	112
612	8	132	0	140
613	32	126	0	158
614	0	1	0	1
615	25	124	0	149
616	24	81	0	105
621	2 5	10	0	12
622		23	0	28
623	0	1	0	1
626	0	6	0	6

Table A.1: Number of directed herring trips separated by gear and statistical area for quarter 1. Directed herring trips defined as 2,000 lbs of kept Atlantic herring on a trip. Gear categories include bottom otter-trawl (OT), purse seine (PS) and mid-water trawl (PR). Mid-water trawl (PR) refers to pair and single mid-water trawls. Source: Vessel Trip Report Database 2005-2009.

Q2	C	ear Categ	orv	
Statistical Area	ОТ	PR PR	PS	- ALL
464	0	0	0	0
465	0	0	0	0
511	0	8	2	10
512	0	10	76	86
513	1	278	121	400
514	0	36	1	37
515	0	35	8	43
521	0	40	2	42
522	0	21	0	21
525	0	2	0	2
526	1	11	0	12
534	0	1	0	1
537	4	50	0	54
538	0	0	0	0
539	9	5	0	14
561	0	0	0	0
562	0	0	0	0 2 1 7
611	1	1	0	2
612	1	0	0	1
613	1	6	0	
614	0	0	0	0
615	0	4	0	4
616	2	6	0	8
621	0	0	0	0
622	0	1	0	1
623	0	0	0	0
626	0	0	0	0

Table A.2: Number of directed herring trips separated by gear and statistical area for quarter 2. Directed herring trips defined as 2,000 lbs of kept Atlantic herring on a trip. Gear categories include bottom otter-trawl (OT), purse seine (PS) and mid-water trawl (PR). Mid-water trawl (PR) refers to pair and single mid-water trawls. Source: Vessel Trip Report Database 2005-2009.

Q3	G	ear Categ	ory	
Statistical Area	OT	PR	PS	ALL
464	0	0	1	1
465	0	0	2	2
511	0	18	119	137
512	3	150	406	559
513	247	242	324	813
514	85	28	8	121
515	0	11	20	31
521	0	14	0	14
522	2	181	3	186
525	0	7	0	7
526	0	0	0	0
534	0	0	0	0
537	0	1	0	1
538	0	0	0	0
539	0	1	0	1
561	0	6	0	6
562	0	0	0	0
611	0	0	0	0
612	0	0	0	0
613	0	0	0	0
614	0	0	0	0
615	0	0	0	0
616	0	0	0	0
621	0	0	0	0
622	0	0	0	0
623	0	0	0	0
626	0	0	0	0

Table A.3: Number of directed herring trips separated by gear and statistical area for quarter 3. Directed herring trips defined as 2,000 lbs of kept Atlantic herring on a trip. Gear categories include bottom otter-trawl (OT), purse seine (PS) and mid-water trawl (PR). Mid-water trawl (PR) refers to pair and single mid-water trawls. Source: Vessel Trip Report Database 2005-2009.

Q4	G	ear Categ	ory	
Statistical Area	OT	PR	PS	ALL
464	0	0	0	0
465	0	1	0	1
511	0	15	53	68
512	0	16	31	47
513	8	106	25	139
514	33	222	8	263
515	0	2	1	3
521	7	199	0	206
522	1	55	0	56
525	1	0	0	1
526	0	1	0	1
534	0	0	0	0
537	2	19	0	21
538	0	0	0	0
539	93	21	0	114
561	0	1	0	1
562	0	1	0	1
611	43	10	0	53
612	2	1	0	3
613	8	6	0	14
614	1	0	0	1
615	0	0	0	0
616	0	0	0	0
621	0	0	0	0
622	0	0	0	0
623	0	0	0	0
626	0	0	0	0

Table A.4: Number of directed herring trips separated by gear and statistical area for quarter 4. Directed herring trips defined as 2,000 lbs of kept Atlantic herring on a trip. Gear categories include bottom otter-trawl (OT), purse seine (PS) and mid-water trawl (PR). Mid-water trawl (PR) refers to pair and single mid-water trawls. Source: Vessel Trip Report Database 2005-2009.

		NMFS BTS \	Winter 199	94-2007
AREA	TOWS	Percent Occurrence	Ranked	Median Q Index Ranked
614	13	0.846153846	1	0.805448788 1
613	128	0.84375	2	-0.083656329 15
539	10	0.8	3	-0.487278536 20
612	30	0.7	4	0.142164949 8
537	225	0.666666667	5	-0.022998617 10
615	102	0.5	6	-0.035149298 12
625	48	0.479166667	7	-0.469611988 19
621	99	0.454545455	8	-0.361947445 17
526	119	0.268907563	9	-0.031869313 11
616	125	0.208	10	0.060962733 9
631	82	0.134146341	11	-0.036515113 13
525	117	0.111111111	12	-0.210428394 16
635	27	0.111111111	12	-0.372659733 18
622	130	0.1	14	0.201160655 6
552	11	0.090909091	15	0.795905513 2
562	25	0.08	16	0.402988721 5
626	131	0.076335878	17	-0.061931623 14
636	32	0.03125	18	0.161388547 7
623	10	0	19	
632	68	0	19	
	100	PACE PROPERTY OF THE PACE PACE PACE PACE PACE PACE PACE PAC	THE RESIDENCE	

Table A.5: Ranked statistical areas (AREA) using percent occurrence and median Q index calculated from river herring presence/absence and number of individuals, respectively, in winter research surveys. The number of survey tows (TOWS) by statistical area is provided. Statistical areas with less than 10 survey tows were excluded from the analysis. Source: NMFS bottom-trawl surveys 1994-2007.

515 166 0.915662651 2 0.185106619 6 511 69 0.913043478 3 0.41081519 4 512 83 0.86746988 4 0.030680333 14 513 113 0.85840708 5 -0.092156843 24 613 246 0.792682927 6 -0.136116442 27 521 191 0.785340314 7 -0.103550876 26 514 185 0.772972973 8 0.004382231 19 537 241 0.742738589 9 0.013147031 16 625 191 0.706806283 10 -0.326634116 30 614 151 0.701986755 11 0.009249683 17 621 273 0.6996337 12 0.004444391 18 612 219 0.666666667 13 0.02287269 15 615 119 0.621848739 14 0.111339016 9		-			NMFS BTS	Spring 199	94-2008		
515 166 0.915662651 2 0.185106619 6 511 69 0.913043478 3 0.41081519 4 512 83 0.86746988 4 0.030680333 14 513 113 0.85840708 5 -0.092156843 24 613 246 0.792682927 6 -0.136116442 27 521 191 0.785340314 7 -0.103550876 26 514 185 0.772972973 8 0.004382231 19 537 241 0.742738589 9 0.013147031 16 625 191 0.706806283 10 -0.326634116 30 614 151 0.701986755 11 0.009249683 17 621 273 0.6996337 12 0.004444391 18 612 219 0.666666667 13 0.02287269 15 615 119 0.621848739 14 0.111339016 9	ARI	ΞA	TOWS	Perce	ent Occurrence	Ranked		Median Q Index	Ranked
511 69 0.913043478 3 0.41081519 4 512 83 0.86746988 4 0.030680333 14 513 113 0.85840708 5 -0.092156843 24 613 246 0.792682927 6 -0.136116442 27 521 191 0.785340314 7 -0.103550876 26 514 185 0.772972973 8 0.004382231 19 537 241 0.742738589 9 0.013147031 16 625 191 0.706806283 10 -0.326634116 30 614 151 0.701986755 11 0.009249683 17 621 273 0.6996337 12 0.004444391 18 612 219 0.666666667 13 0.02287269 15 615 119 0.621848739 14 0.111339016 9 465 100 0.61 15 -0.075776668 22 </td <td>10</td> <td>539</td> <td>43</td> <td></td> <td>0.930232558</td> <td></td> <td></td> <td>0.048223074</td> <td>12</td>	10	539	43		0.930232558			0.048223074	12
512 83 0.86746988 4 0.030680333 14 513 113 0.85840708 5 -0.092156843 24 613 246 0.792682927 6 -0.136116442 27 521 191 0.785340314 7 -0.103550876 26 514 185 0.772972973 8 0.004382231 19 537 241 0.742738589 9 0.013147031 16 625 191 0.706806283 10 -0.326634116 30 614 151 0.701986755 11 0.009249683 17 621 273 0.6996337 12 0.004444391 18 612 219 0.666666667 13 0.02287269 15 615 119 0.621848739 14 0.111339016 9 465 100 0.61 15 -0.075776668 22 207 0.608695652 16 0.034462192 13		515	166		0.915662651	2		0.185106619	6
513 113 0.85840708 5 -0.092156843 24 613 246 0.792682927 6 -0.136116442 27 521 191 0.785340314 7 -0.103550876 26 514 185 0.772972973 8 0.004382231 19 537 241 0.742738589 9 0.013147031 16 625 191 0.706806283 10 -0.326634116 30 614 151 0.701986755 11 0.009249683 17 621 273 0.6996337 12 0.004444391 18 612 219 0.666666667 13 0.02287269 15 615 119 0.621848739 14 0.111339016 9 465 100 0.61 15 -0.07576668 22 207 0.608695652 16 0.034462192 13 631 179 0.519553073 17 -0.202880679 28		511	69	130	0.913043478	3		0.41081519	4
613 246 0.792682927 6 -0.136116442 27 521 191 0.785340314 7 -0.103550876 26 514 185 0.772972973 8 0.004382231 19 537 241 0.742738589 9 0.013147031 16 625 191 0.706806283 10 -0.326634116 30 614 151 0.701986755 11 0.009249683 17 621 273 0.6996337 12 0.004444391 18 612 219 0.666666667 13 0.02287269 15 615 119 0.621848739 14 0.111339016 9 465 100 0.61 15 -0.075776668 22 522 207 0.608695652 16 0.034462192 13 631 179 0.519553073 17 -0.202880679 28 464 89 0.483146067 18 -0.096883651 25 <td></td> <td>512</td> <td>83</td> <td></td> <td>0.86746988</td> <td>4</td> <td></td> <td>0.030680333</td> <td>14</td>		512	83		0.86746988	4		0.030680333	14
521 191 0.785340314 7 -0.103550876 26 514 185 0.772972973 8 0.004382231 19 537 241 0.742738589 9 0.013147031 16 625 191 0.706806283 10 -0.326634116 30 614 151 0.701986755 11 0.009249683 17 621 273 0.6996337 12 0.004444391 18 612 219 0.666666667 13 0.02287269 15 615 119 0.621848739 14 0.111339016 9 465 100 0.61 15 -0.075776668 22 522 207 0.608695652 16 0.034462192 13 631 179 0.519553073 17 -0.202880679 28 464 89 0.483146067 18 -0.096883651 25 616 119 0.470588235 19 -0.048907631 20 </td <td></td> <td>513</td> <td>113</td> <td></td> <td>0.85840708</td> <td>5</td> <td></td> <td>-0.092156843</td> <td>24</td>		513	113		0.85840708	5		-0.092156843	24
514 185 0.772972973 8 0.004382231 19 537 241 0.742738589 9 0.013147031 16 625 191 0.706806283 10 -0.326634116 30 614 151 0.701986755 11 0.009249683 17 621 273 0.6996337 12 0.004444391 18 612 219 0.666666667 13 0.02287269 15 615 119 0.621848739 14 0.111339016 9 465 100 0.61 15 -0.075776668 22 522 207 0.608695652 16 0.034462192 13 631 179 0.519553073 17 -0.202880679 28 464 89 0.483146067 18 -0.096883651 25 616 119 0.470588235 19 -0.048907631 20 561 49 0.423076923 21 -0.05188503 21 <td></td> <td>613</td> <td>246</td> <td></td> <td>0.792682927</td> <td>6</td> <td></td> <td>-0.136116442</td> <td>27</td>		613	246		0.792682927	6		-0.136116442	27
537 241 0.742738589 9 0.013147031 16 625 191 0.706806283 10 -0.326634116 30 614 151 0.701986755 11 0.009249683 17 621 273 0.6996337 12 0.004444391 18 612 219 0.666666667 13 0.02287269 15 615 119 0.621848739 14 0.111339016 9 465 100 0.61 15 -0.075776668 22 522 207 0.608695652 16 0.034462192 13 631 179 0.519553073 17 -0.202880679 28 464 89 0.483146067 18 -0.096883651 25 616 119 0.470588235 19 -0.048907631 20 561 49 0.428571429 20 0.269207792 5 526 156 0.423076923 21 -0.05188503 21 <td></td> <td>521</td> <td>191</td> <td></td> <td>0.785340314</td> <td>7</td> <td></td> <td>-0.103550876</td> <td>26</td>		521	191		0.785340314	7		-0.103550876	26
625 191 0.706806283 10 -0.326634116 30 614 151 0.701986755 11 0.009249683 17 621 273 0.6996337 12 0.004444391 18 612 219 0.666666667 13 0.02287269 15 615 119 0.621848739 14 0.111339016 9 465 100 0.61 15 -0.075776668 22 522 207 0.608695652 16 0.034462192 13 631 179 0.519553073 17 -0.202880679 28 464 89 0.483146067 18 -0.096883651 25 616 119 0.470588235 19 -0.048907631 20 561 49 0.428571429 20 0.269207792 5 526 156 0.423076923 21 -0.05188503 21 466 12 0.416666667 22 0.471084801 3 <td></td> <td>514</td> <td>185</td> <td></td> <td>0.772972973</td> <td>8</td> <td></td> <td>0.004382231</td> <td>19</td>		514	185		0.772972973	8		0.004382231	19
614 151 0.701986755 11 0.009249683 17 621 273 0.6996337 12 0.004444391 18 612 219 0.666666667 13 0.02287269 15 615 119 0.621848739 14 0.111339016 9 465 100 0.61 15 -0.075776668 22 522 207 0.608695652 16 0.034462192 13 631 179 0.519553073 17 -0.202880679 28 464 89 0.483146067 18 -0.096883651 25 616 119 0.470588235 19 -0.048907631 20 561 49 0.428571429 20 0.269207792 5 526 156 0.423076923 21 -0.05188503 21 466 12 0.416666667 22 0.471084801 3 635 156 0.217948718 23 -0.548940546 32 <td></td> <td>537</td> <td>241</td> <td></td> <td>0.742738589</td> <td>9</td> <td></td> <td>0.013147031</td> <td>16</td>		537	241		0.742738589	9		0.013147031	16
621 273 0.6996337 12 0.004444391 18 612 219 0.666666667 13 0.02287269 15 615 119 0.621848739 14 0.111339016 9 465 100 0.61 15 -0.075776668 22 522 207 0.608695652 16 0.034462192 13 631 179 0.519553073 17 -0.202880679 28 464 89 0.483146067 18 -0.096883651 25 616 119 0.470588235 19 -0.048907631 20 561 49 0.428571429 20 0.269207792 5 526 156 0.423076923 21 -0.05188503 21 466 12 0.416666667 22 0.471084801 3 635 156 0.217948718 23 -0.548940546 32 525 230 0.204347826 24 0.066841291 11 <td></td> <td>625</td> <td>191</td> <td></td> <td>0.706806283</td> <td>10</td> <td></td> <td>-0.326634116</td> <td>30</td>		625	191		0.706806283	10		-0.326634116	30
612 219 0.6666666667 13 0.02287269 15 615 119 0.621848739 14 0.111339016 9 465 100 0.61 15 -0.075776668 22 522 207 0.608695652 16 0.034462192 13 631 179 0.519553073 17 -0.202880679 28 464 89 0.483146067 18 -0.096883651 25 616 119 0.470588235 19 -0.048907631 20 561 49 0.428571429 20 0.269207792 5 526 156 0.423076923 21 -0.05188503 21 466 12 0.416666667 22 0.471084801 3 635 156 0.217948718 23 -0.548940546 32 525 230 0.204347826 24 0.066841291 11 551 111 0.18018018 25 0.655564103 1 <td></td> <td>614</td> <td>151</td> <td></td> <td>0.701986755</td> <td>11</td> <td></td> <td>0.009249683</td> <td>474 17</td>		614	151		0.701986755	11		0.009249683	474 17
615 119 0.621848739 14 0.111339016 9 465 100 0.61 15 -0.075776668 22 522 207 0.608695652 16 0.034462192 13 631 179 0.519553073 17 -0.202880679 28 464 89 0.483146067 18 -0.096883651 25 616 119 0.470588235 19 -0.048907631 20 561 49 0.428571429 20 0.269207792 5 526 156 0.423076923 21 -0.05188503 21 466 12 0.416666667 22 0.471084801 3 635 156 0.217948718 23 -0.548940546 32 525 230 0.204347826 24 0.066841291 11 551 111 0.18018018 25 0.127428325 8 622 122 0.12295082 26 0.655564103 1		621	273		0.6996337	12		0.004444391	18
465 100 0.61 15 -0.075776668 22 522 207 0.608695652 16 0.034462192 13 631 179 0.519553073 17 -0.202880679 28 464 89 0.483146067 18 -0.096883651 25 616 119 0.470588235 19 -0.048907631 20 561 49 0.428571429 20 0.269207792 5 526 156 0.423076923 21 -0.05188503 21 466 12 0.416666667 22 0.471084801 3 635 156 0.217948718 23 -0.548940546 32 525 230 0.204347826 24 0.066841291 11 551 111 0.18018018 25 0.127428325 8 622 122 0.12295082 26 0.655564103 1 552 71 0.112676056 27 -0.243404178 29 <td></td> <td>612</td> <td>219</td> <td></td> <td>0.666666667</td> <td>13</td> <td></td> <td>0.02287269</td> <td>15</td>		612	219		0.666666667	13		0.02287269	15
522 207 0.608695652 16 0.034462192 13 631 179 0.519553073 17 -0.202880679 28 464 89 0.483146067 18 -0.096883651 25 616 119 0.470588235 19 -0.048907631 20 561 49 0.428571429 20 0.269207792 5 526 156 0.423076923 21 -0.05188503 21 466 12 0.416666667 22 0.471084801 3 635 156 0.217948718 23 -0.548940546 32 525 230 0.204347826 24 0.066841291 11 551 111 0.18018018 25 0.127428325 8 622 122 0.12295082 26 0.655564103 1 552 71 0.112676056 27 -0.243404178 29 626 120 0.0833333333 28 0.146788992 <td< td=""><td></td><td>615</td><td>119</td><td></td><td>0.621848739</td><td>14</td><td></td><td>0.111339016</td><td>9</td></td<>		615	119		0.621848739	14		0.111339016	9
631 179 0.519553073 17 -0.202880679 28 464 89 0.483146067 18 -0.096883651 25 616 119 0.470588235 19 -0.048907631 20 561 49 0.428571429 20 0.269207792 5 526 156 0.423076923 21 -0.05188503 21 466 12 0.416666667 22 0.471084801 3 635 156 0.217948718 23 -0.548940546 32 525 230 0.204347826 24 0.066841291 11 551 111 0.18018018 25 0.127428325 8 622 122 0.12295082 26 0.655564103 1 552 71 0.112676056 27 -0.243404178 29 626 120 0.0833333333 28 0.146788992 7 562 134 0.044776119 29 0.081239939 10 632 78 0.012820513 30 0.486129946		465	100		0.61	15		-0.075776668	22
464 89 0.483146067 18 -0.096883651 25 616 119 0.470588235 19 -0.048907631 20 561 49 0.428571429 20 0.269207792 5 526 156 0.423076923 21 -0.05188503 21 466 12 0.416666667 22 0.471084801 3 635 156 0.217948718 23 -0.548940546 32 525 230 0.204347826 24 0.066841291 11 551 111 0.18018018 25 0.127428325 8 622 122 0.12295082 26 0.655564103 1 552 71 0.112676056 27 -0.243404178 29 626 120 0.0833333333 28 0.146788992 7 562 134 0.044776119 29 0.081239939 10 632 78 0.012820513 30 0.486129946 2 636 39 0 31 -0.337694765 31		522	207		0.608695652	16		0.034462192	13
616 119 0.470588235 19 -0.048907631 20 561 49 0.428571429 20 0.269207792 5 526 156 0.423076923 21 -0.05188503 21 466 12 0.416666667 22 0.471084801 3 635 156 0.217948718 23 -0.548940546 32 525 230 0.204347826 24 0.066841291 11 551 111 0.18018018 25 0.127428325 8 622 122 0.12295082 26 0.655564103 1 552 71 0.112676056 27 -0.243404178 29 626 120 0.0833333333 28 0.146788992 7 562 134 0.044776119 29 0.081239939 10 632 78 0.012820513 30 0.486129946 2 636 39 0 31 -0.337694765 31		631	179		0.519553073	17		-0.202880679	28
561 49 0.428571429 20 0.269207792 5 526 156 0.423076923 21 -0.05188503 21 466 12 0.416666667 22 0.471084801 3 635 156 0.217948718 23 -0.548940546 32 525 230 0.204347826 24 0.066841291 11 551 111 0.18018018 25 0.127428325 8 622 122 0.12295082 26 0.655564103 1 552 71 0.112676056 27 -0.243404178 29 626 120 0.0833333333 28 0.146788992 7 562 134 0.044776119 29 0.081239939 10 632 78 0.012820513 30 0.486129946 2 636 39 0 31 -0.337694765 31		464	89		0.483146067	18		-0.096883651	25
526 156 0.423076923 21 -0.05188503 21 466 12 0.416666667 22 0.471084801 3 635 156 0.217948718 23 -0.548940546 32 525 230 0.204347826 24 0.066841291 11 551 111 0.18018018 25 0.127428325 8 622 122 0.12295082 26 0.655564103 1 552 71 0.112676056 27 -0.243404178 29 626 120 0.0833333333 28 0.146788992 7 562 134 0.044776119 29 0.081239939 10 632 78 0.012820513 30 0.486129946 2 636 39 0 31 -0.337694765 31		616	119		0.470588235	19		-0.048907631	86 20
466 12 0.416666667 22 0.471084801 3 635 156 0.217948718 23 -0.548940546 32 525 230 0.204347826 24 0.066841291 11 551 111 0.18018018 25 0.127428325 8 622 122 0.12295082 26 0.655564103 1 552 71 0.112676056 27 -0.243404178 29 626 120 0.0833333333 28 0.146788992 7 562 134 0.044776119 29 0.081239939 10 632 78 0.012820513 30 0.486129946 2 636 39 0 31 -0.337694765 31		561	49		0.428571429	20		0.269207792	ES8 5
635 156 0.217948718 23 -0.548940546 32 525 230 0.204347826 24 0.066841291 11 551 111 0.18018018 25 0.127428325 8 622 122 0.12295082 26 0.655564103 1 552 71 0.112676056 27 -0.243404178 29 626 120 0.0833333333 28 0.146788992 7 562 134 0.044776119 29 0.081239939 10 632 78 0.012820513 30 0.486129946 2 636 39 0 31 -0.337694765 31		526	156		0.423076923	21		-0.05188503	200 21
525 230 0.204347826 24 0.066841291 11 551 111 0.18018018 25 0.127428325 8 622 122 0.12295082 26 0.655564103 1 552 71 0.112676056 27 -0.243404178 29 626 120 0.0833333333 28 0.146788992 7 562 134 0.044776119 29 0.081239939 10 632 78 0.012820513 30 0.486129946 2 636 39 0 31 -0.337694765 31		466	12		0.416666667	22		0.471084801	3
551 111 0.18018018 25 0.127428325 8 622 122 0.12295082 26 0.655564103 1 552 71 0.112676056 27 -0.243404178 29 626 120 0.083333333 28 0.146788992 7 562 134 0.044776119 29 0.081239939 10 632 78 0.012820513 30 0.486129946 2 636 39 0 31 -0.337694765 31		635	156		0.217948718	23		-0.548940546	32
622 122 0.12295082 26 0.655564103 1 552 71 0.112676056 27 -0.243404178 29 626 120 0.0833333333 28 0.146788992 7 562 134 0.044776119 29 0.081239939 10 632 78 0.012820513 30 0.486129946 2 636 39 0 31 -0.337694765 31		525	230		0.204347826	24		0.066841291	11
622 122 0.12295082 26 0.655564103 1 552 71 0.112676056 27 -0.243404178 29 626 120 0.0833333333 28 0.146788992 7 562 134 0.044776119 29 0.081239939 10 632 78 0.012820513 30 0.486129946 2 636 39 0 31 -0.337694765 31		551	111		0.18018018	25		0.127428325	8
552 71 0.112676056 27 -0.243404178 29 626 120 0.0833333333 28 0.146788992 7 562 134 0.044776119 29 0.081239939 10 632 78 0.012820513 30 0.486129946 2 636 39 0 31 -0.337694765 31		and the same	122		0.12295082	26		0.655564103	229/8/1
562 134 0.044776119 29 0.081239939 10 632 78 0.012820513 30 0.486129946 2 636 39 0 31 -0.337694765 31			71		0.112676056	27		-0.243404178	29
562 134 0.044776119 29 0.081239939 10 632 78 0.012820513 30 0.486129946 2 636 39 0 31 -0.337694765 31		100							
632 78 0.012820513 30 0.486129946 2 636 39 0 31 -0.337694765 31								0.081239939	10
636 39 0 31 -0.337694765 31									2
104		702	53		0	31		-0.085072957	23

Table A.6: Ranked statistical areas (AREA) using percent occurrence and median Q index calculated from river herring presence/absence and number of individuals, respectively, in spring research surveys. The number of survey tows (TOWS) by statistical area is provided. Statistical areas with less than 10 survey tows were excluded from the analysis. Source: NMFS bottom-trawl surveys 1994-2008.

		NMFS BTS	Fall 1994	-2008
AREA	TOWS	Percent Occurrence		Median Q Index Ranked
512	91	0.626373626	1	0.955824637 2
514	160	0.58125	2	0.497206356 6
466	14	0.5	3	0.229886445 12
511	62	0.5	3	0.594104648 4
465	110	0.427272727	5	-0.275132304 20
513	122	0.37704918	6	-0.366110161 24
515	156	0.25	7	-0.120340473 19
537	228	0.083333333	8	0.347935696 8
522	7-14	0.067307692	9	0.43719754 7
552	81	0.061728395	10	-1.061954751 31
551	125	0.056	11	0.304046913 10
525	233	0.051502146	12	0.064427119 16
521	208	0.048076923	13	-0.341945975 21
635	158	0.03164557	14	-0.488781686 26
562	128	0.03125	15	0.147723364 13
702	66	0.03030303	16	0.793263683 3
539	36	0.027777778	17	-0.362844938 23
464	74	0.027027027	18	-1.129410073 32
612	209	0.023923445	19	-0.347490311 22
613	273	0.021978022	20	-0.031337982 17
561	52	0.019230769	21	-0.677302761 28
526	164	0.018292683	22	-0.458971258 25
621	269	0.011152416	23	-0.036204706 18
616	114	0.00877193	24	0.287512246 11
614	138	0.007246377	25	0.555480202 5
631	171	0.005847953	26	0.120887594 14
615	119	0	27	-0.618119832 27
622	114	0	27	-0.887163123 30
625	198	0	27	0.09910871 15
626	118	0	27	-0.83185715 29
632	70	0	27	1.267479015 1
636	33	9.2	27	0.314304904 9

Table A.7: Ranked statistical areas (AREA) using percent occurrence and median Q index calculated from river herring presence/absence and number of individuals, respectively, in fall research surveys. The number of survey tows (TOWS) by statistical area is provided. Statistical areas with less than 10 survey tows were excluded from the analysis. Source: NMFS bottom-trawl surveys 1994-2008.

		NMFS BTS W	inter 1994	1-2008	
STRATUM		Percent Occurrence		Median Q Index Rank	
1050	50	0.84	1	6.93889E-17	15
1060	109	0.80733945	2	0.035478596	13
1010	89	0.741573034	3	-0.017905444	16
1090	61	0.524590164	4	-0.155907169	22
1070	37	0.513513514	5	0.410531734	8
1690	98	0.5	6	-0.086548458	19
1020	87	0.482758621	7	0.012051389	14
1730	60	0.46666667	8	-0.086979627	20
1080	11	0.454545455	9	-1.13437527	29
1110	40	0.4	10	0.257752174	10
1100	96	0.395833333	11	-0.235850851	25
1650	126	0.285714286	12	-0.027856228	17
1740	58	0.275862069	13	-0.660812928	27
1130	72	0.180555556	14	-0.214475284	23
1040	12	0.166666667	15	-0.750797253	28
1030	37	0.135135135	16	0.426406974	5
1610	68	0.088235294	17	-0.36073455	26
1160	29	0.034482759	18	0.389125787	9
1750	43	0.023255814	19	-0.09910786	21
1700	55	0.018181818	20	-0.23131104	24
1140	33	0	21	0.426406974	5
1190	10	0	21	0.620106139	4
1620	29	0	21	0.168490797	12
1630	24	0	21	-1.220873863	30
1640	10	0	21	1.146046614	1
1660	41	0	21	-0.053739318	18
1670	36	0	21	0.791649478	3
1710	39	0	21	0.23131104	11
1720	10	0	21	0.804026489	2
1760	13	0	21	0.418695621	7

Table A.8: Ranked survey strata (STRATUM) using percent occurrence and median Q index calculated from river herring presence/absence and number of individuals, respectively, in winter research surveys. The number of survey tows (TOWS) by survey strata is provided. Survey strata with less than 10 survey tows were excluded from the analysis. Source: NMFS bottom-trawl surveys 1994-2007.

NMFS BTS Spring 1994-2008

STRATUM	TOWS	Percent Occurrence	Ranked	Median Q Index	Ranked
3590	10	1	1	0.98392021	2
1240	89	0.95505618	2	0.223246262	33
1370	74	0.932432432	3	0.100069653	49
1380	59	0.93220339	4	-0.425750232	81
3050	27	0.925925926	5	-0.111339016	64
3600	23	0.913043478	6	0.605991274	10
3450	22	0.909090909	7	0.117136801	46
1400	32	0.90625	8	0.149316234	42
3020	29	0.896551724	9	0.556287714	12
1351	27	0.88888889	10	0.197099084	35
3660	16	0.875	11	0.828594137	5
1050	63	0.873015873	12	0.305303336	27
3360	29	0.862068966	13	-0.782222878	91
1060	106	0.858490566	14	-0.884740393	94
1390	42	0.857142857	15	0.201154176	34
3300	14	0.857142857	15	0.337011254	26
1280	105	0.847619048	17	0.090882184	50
3270	13	0.846153846	18	-0.636722591	89
3210	12	0.833333333	19	-1.024235236	96
3280	30	0.833333333	19	-0.421201932	80
1360	112	0.821428571	21	-0.09588692	61
3240	28	0.821428571	21	-0.277764259	74
3350	27	0.814814815	23	-1.140641133	97
3340	30	0.8	24	-1.402562283	106
3250	29	0.793103448	25	0.690971688	6
3140	24	0.791666667	26	0.551356512	13
3130	28	0.785714286	27	-0.849977935	93
3220	31	0.774193548	28	-1.441988721	107
1270	57	0.771929825	29	-0.099565033	62
1340	69	0.768115942	30	-0.43550702	82
1220	53	0.754716981	31	0.174848423	39
3060	12	0.75	32	-0.592992878	88
3180	12	0.75	32	-0.336583687	77
1090	67	0.746268657	34	-0.403730172	79
3160	31	0.741935484	35	0.975207456	3
1070	27	0.740740741	36	0.256053654	31
3170	27	0.740740741	36	-0.446773288	83
1010	99	0.737373737	38	-0.965170421	95
3330	15	0.733333333	39	-1.872819983	108
3260	29	0.724137931	40	1.267823155	1

3460	18	0.72222222	41	0.439552304	19
3200	28	0.714285714	42	0.117473003	45
3610	27	0.703703704	43	0.669111025	7
3150	10	0.7	44	0.251872066	32
3580	10	0.7	44	-0.82222227	92
3110	29	0.689655172	46	-1.358142081	105
3320	25	0.68	47	0.129317899	44
1020	96	0.677083333	48	-0.059313664	59
1250	37	0.675675676	49	0.178130245	37
1290	106	0.660377358	50	-0.271242146	72
1230	57	0.649122807	51	-0.110929914	63
3230	28	0.642857143	52	-1.150390295	98
3310	28	0.642857143	52	0.008703763	54
1260	53	0.641509434	54	-0.169355223	69
3040	30	0.633333333	55	-0.466113337	84
3290	27	0.62962963	56	-0.188232439	71
3400	31	0.612903226	57	-0.336711484	78
3370	30	0.6	58	0.378768747	24
3080	29	0.586206897	59	0.274516216	29
3120	12	0.583333333	60	-1.174267118	100
3190	31	0.580645161	61	-0.161000479	67
3100	28	0.571428571	62	0.285591522	28
3390	14	0.571428571	62	-0.49048516	86
1690	86	0.569767442	64	-0.177319148	70
1730	71	0.563380282	65	0.06968492	51
1100	111	0.54954955	66	0.175575848	38
3070	28	0.535714286	67	-0.044458845	58
3090	15	0.533333333	68	-0.330351013	76
3380	29	0.517241379	69	0.921262905	4
3550	49	0.489795918	70	-1.184282207	101
1030	27	0.481481481	71	0.386232718	23
1300	42	0.476190476	72	0.34623796	25
3410	25	0.44	73	-0.161902497	68
3420	14	0.428571429	74	0.132054335	43
1080	12	0.416666667	75	0.453304692	18
3030	12	0.416666667	75	0.581798938	11
1650	97	0.371134021	77	-0.275296784	73
1740	55	0.327272727	78	0.102399329	47
3440	29	0.310344828	79	0.405802856	22
1180	10	0.3	80	-0.663761088	90
1210	55	0.290909091	81	0.150809258	41
1040	15	0.26666667	82	0.261225105	30
1330	24	0.25	83	0.652803781	9

1140	43	0.23255814	84	0.510421643	15
3430	28	0.214285714	85	0.652876207	8
1110	29	0.206896552	86	-1.305749876	103
1130	132	0.204545455	87	-0.030573692	56
1170	40	0.2	88	0.051529331	52
1190	119	0.18487395	89	0.185623879	36
1150	11	0.181818182	90	-0.14902602	66
1200	72	0.180555556	91	-1.207827251	102
1610	43	0.162790698	92	-0.032260003	57
1700	53	0.132075472	93	0.415497455	21
1750	33	0.090909091	94	-1.316687896	104
1760	13	0.076923077	95	0.425856017	20
7510	19	0.052631579	96	-0.48635946	85
7520	20	0.05	97	-0.323161627	75
1670	30	0.033333333	98	0.167895865	40
1160	161	0.02484472	99	-0.116149263	65
8500	43	0.023255814	100	0.457571568	17
1660	45	0.02222222	101	0.462974908	16
1620	31	0	102	-1.159325505	99
1630	26	0	102	0.102028247	48
1640	13	0	102	0.525458197	14
1710	30	0	102	-0.009284042	55
1720	13	0	102	-0.583942112	87
8510	21	0	102	-0.081641868	60
8520	19	0	102	0.047231444	53

Table A.9: Ranked survey strata (STRATUM) using percent occurrence and median Q index calculated from river herring presence/absence and number of individuals, respectively, in spring research surveys. The number of survey tows (TOWS) by survey strata is provided. Survey strata with less than 10 survey tows were excluded from the analysis. Source: NMFS bottom-trawl surveys 1994-2008.

NMFS BTS Fall 1994-2008					
		Percent		Median Q	
STRATUM	TOWS	Occurrence	Ranked	Index	Ranked
3660	17	0.882352941	1	1.539239575	2
1390	43	0.813953488	2	-0.837880357	85
3590	10	0.8	3	-0.36418973	70
3600	17	0.705882353	4	-0.254212876	67
3610	22	0.545454545	5	-0.130311289	59
1351	27	0.518518519	6	-0.871442581	87
1340	73	0.479452055	7	-1.122502735	95
1400	23	0.47826087	8	-0.47769524	74
1330	31	0.419354839	9	0.628904218	23
1260	55	0.418181818	10	0.161718192	43
1380	70	0.414285714	11	-1.163226259	98
1270	61	0.360655738	12	0.679963176	20
1360	111	0.36036036	13	-0.180664628	64
1370	68	0.279411765	14	0.450533597	30
1280	99	0.181818182	15	-0.949118092	92
3060	13	0.153846154	16	0.982187822	8
1210	55	0.127272727	17	0.0260233	51
1230	68	0.117647059	18	0.732832448	16
3130	29	0.103448276	19	-0.183321897	65
1060	109	0.091743119	20	-0.766634312	83
7520	23	0.086956522	21	0.228319336	39
3030	12	0.083333333	22	0.208084426	42
3390	13	0.076923077	23	2.00481621	1
1290	105	0.076190476	24	-0.14798711	60
1130	133	0.07518797	25	0.057655565	46
1160	174	0.074712644	26	-0.398668486	73
3460	27	0.074074074	27	-1.148320885	97
3430	28	0.071428571	28	0.779002499	14
3040	30	0.06666667	29	0.410669459	33
3070	30	0.06666667	29	1.100658507	6
1100	111	0.063063063	31	0.72119365	17
1140	43	0.046511628	32	0.893391581	11
1090	69	0.043478261	33	0.252457727	38
3450	24	0.041666667	34	-1.749463555	102
7510	24	0.041666667	34	0.029346272	50
1220	54	0.037037037	36	0.433906575	31
1240	82	0.036585366	37	-0.663612748	80
3160	29	0.034482759	38	0.267491304	37

3290	29	0.034482759	38	0.429204943	32
3280	31	0.032258065	40	0.209718939	41
1200	82	0.024390244	41	-0.396090443	72
1300	41	0.024390244	41	0.281213419	36
8500	43	0.023255814	43	0.5263253	27
1050	56	0.017857143	44	0.95809196	9
1690	86	0.011627907	45	-0.072196593	54
1020	99	0.01010101	46	0.022067181	52
1650	103	0.009708738	47	0.631104762	22
1010	100	0	48	-0.930520742	90
1030	27	0	48	0.481330406	28
1040	12	0	48	0.685622787	19
1070	26	0	48	-0.160038135	62
1080	12	0	48	-0.073283889	55
1110	27	0	48	-0.865119542	86
1120	10	0	48	-0.665486325	81
1150	13	0	48	-1.997465415	103
1170	40	0	48	0.389130196	34
1180	16	0	48	0.674500102	21
1190	106	0	48	-0.902536708	88
1250	38	0	48	-0.148506179	61
1610	44	0	48	-0.176197876	63
1620	31	0	48	0.030680333	49
1630	25	0	48	0.225386874	40
1660	44	0	48	-1.016610625	93
1670	23	0	48	-0.597221192	77
1700	59	0	48	0.462273931	29
1710	26	0	48	0.915935105	10
1730	74	0	48	-1.100658507	94
1740	58	0	48	-0.523354539	76
1750	25	0	48	-0.203393041	66
1760	10	0	48	-0.096559642	58
3020	27	0	48	0.045925081	48
3050	27	0	48	0.718372769	18
3080	27	0	48	-1.281551566	99
3090	14	0	48	-0.936377457	91
3100	27	0	48	-0.677353304	82
3110	29	0	48	-0.382867268	71
3140	25	0	48	-0.036468129	53
3150	10	0	48	0.086702021	45
3170	24	0	48	0.529644281	26
3180	13	0	48	0.735856255	15
3190	28	0	48	1.009544967	7

3200	29	0	48	-1.662834768	101
3220	30	0	48	-1.144354957	96
3230	26	0	48	-0.774676276	84
3240	25	0	48	-0.522490436	75
3250	28	0	48	-0.282700278	68
3260	28	0	48	-0.07919625	56
3270	11	0	48	0.049986821	47
3300	12	0	48	0.605502043	24
3310	29	0	48	0.826293052	13
3320	27	0	48	1.219666404	3
3330	12	0	48	-2.039499792	104
3340	29	0	48	-1.373650623	100
3350	27	0	48	-0.909053665	89
3360	27	0	48	-0.597500894	78
3370	28	0	48	-0.33121538	69
3380	30	0	48	-0.091198392	57
3400	29	0	48	0.121728316	44
3410	29	0	48	0.382052875	35
3420	10	0	48	0.571782999	25
3440	29	0	48	1.178106063	4
3550	51	0	48	-0.656184088	79
8510	20	0	48	0.863339047	12
8520	21	0	48	1.148320885	5

Table A.10: Ranked survey strata (STRATUM) using percent occurrence and median Q index calculated from river herring presence/absence and number of individuals, respectively, in fall research surveys. The number of survey tows (TOWS) by survey strata is provided. Survey strata with less than 10 survey tows were excluded from the analysis. Source: NMFS bottom-trawl surveys 1994-2008.

Figures

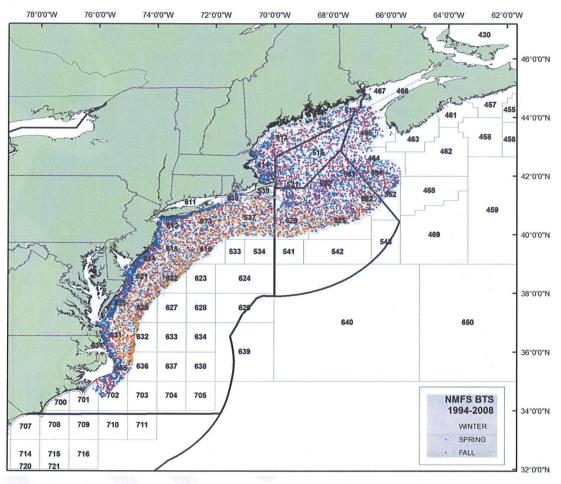


Figure A.1: Map of seasonal research surveys. Source: NMFS bottom-trawl surveys 1994-2008.

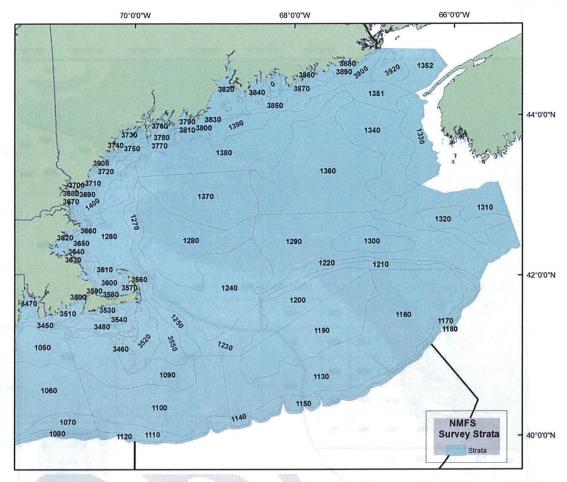


Figure A.2: Map of research survey strata in the Gulf of Maine and Georges Bank. Source: NMFS 2010.

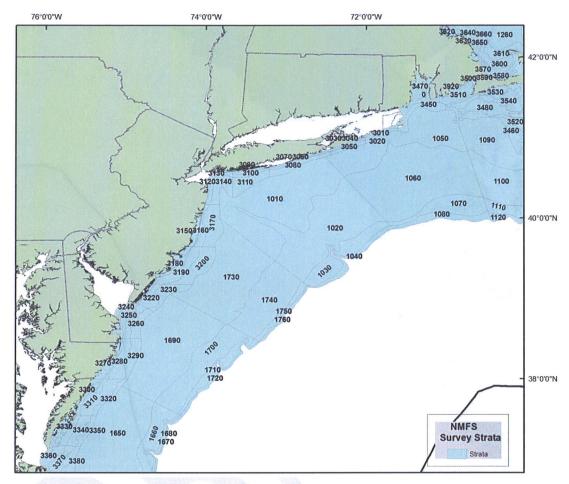


Figure A.3: Map of research survey strata in the northern Mid-Atlantic Bight. Source: NMFS 2010.

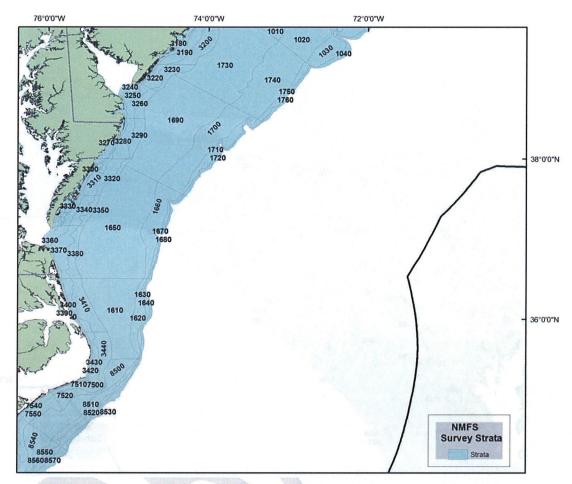


Figure A.4: Map of research survey strata in the central Mid-Atlantic Bight. Source: NMFS 2010.

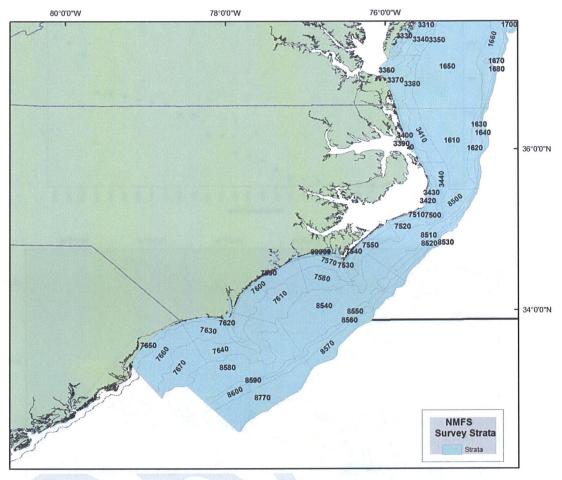


Figure A.5: Map of research survey strata in the southern Mid-Atlantic Bight. Source: NMFS 2010.

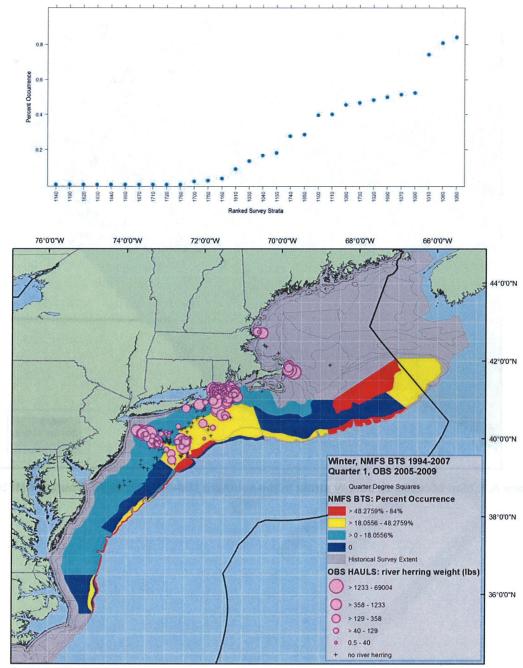
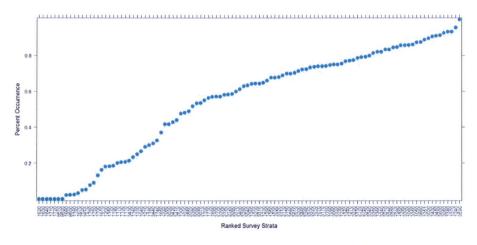



Figure A.6: Percent occurrence of river herring in winter research surveys by survey strata ranked from lowest to highest (top). Map of corresponding river herring percent occurrence by survey strata grouped by quantiles (bottom). Scaled pink circles represent river herring bycatch (lbs) in observed hauls and sets from quarter 1 directed herring trips. A "+" signifies that an observed haul or set did not catch river herring. Directed herring trips are defined as 2,000 lbs of kept Atlantic herring on a trip. Sources: NMFS bottom-trawl surveys 1994-2007 and NEFOP Database 2005-2009.

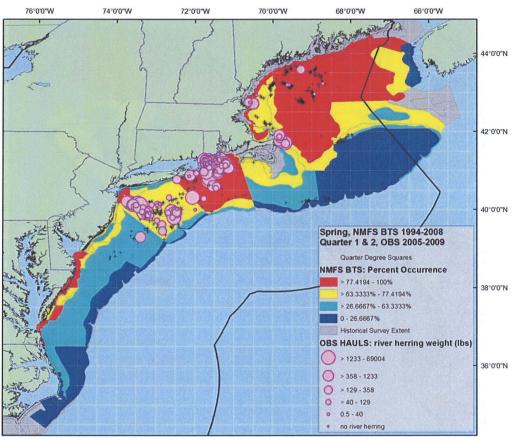
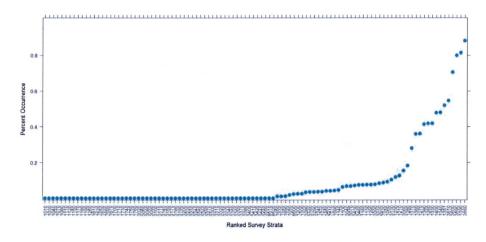



Figure A.7: Percent occurrence of river herring in spring research surveys by survey strata ranked from lowest to highest (top). Map of corresponding river herring percent occurrence by survey strata grouped by quantiles (bottom). Scaled pink circles represent river herring bycatch (lbs) in observed hauls and sets from quarter 1 and 2 directed herring trips. A "+" signifies that an observed haul or set did not catch river herring. Directed herring trips are defined as 2,000 lbs of kept Atlantic herring on a trip. Sources: NMFS bottom-trawl surveys 1994-2008 and NEFOP Database 2005-2009.

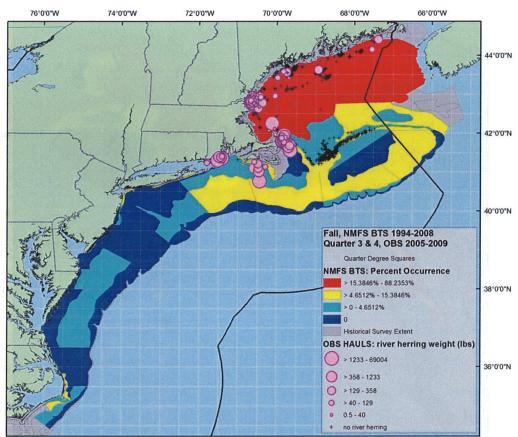
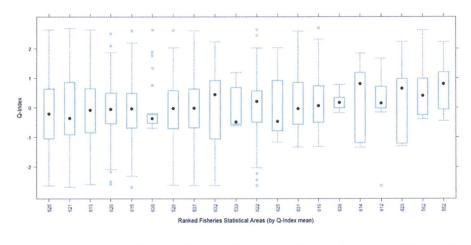



Figure A.8: Percent occurrence of river herring in fall research surveys by survey strata ranked from lowest to highest (top). Map of corresponding river herring percent occurrence by survey strata grouped by quantiles (bottom). Scaled pink circles represent river herring bycatch (lbs) in observed hauls and sets from quarter 3 and 4 directed herring trips. A "+" signifies that an observed haul or set did not catch river herring. Directed herring trips are defined as 2,000 lbs of kept Atlantic herring on a trip. Sources: NMFS bottom-trawl surveys 1994-2008 and NEFOP Database 2005-2009.

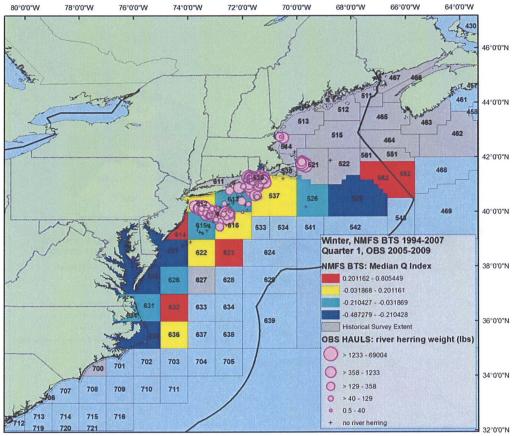
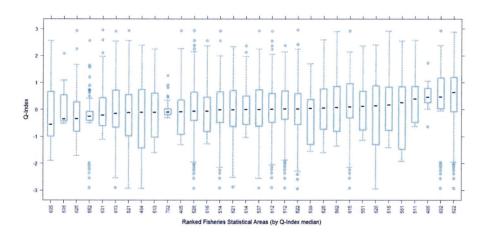



Figure A.9: Median Q index of river herring in winter research surveys by statistical area ranked from lowest to highest (top). Map of corresponding river herring median Q index by statistical area grouped by quantiles (bottom). Scaled pink circles represent river herring bycatch (lbs) in observed hauls and sets from quarter 1 directed herring trips. A "+" signifies that an observed haul or set did not catch river herring. Directed herring trips are defined as 2,000 lbs of kept Atlantic herring on a trip. Sources: NMFS bottom-trawl surveys 1994-2007 and NEFOP Database 2005-2009.

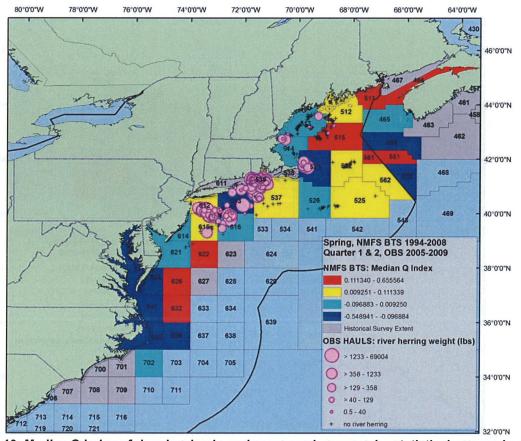


Figure A.10: Median Q index of river herring in spring research surveys by statistical area ranked from lowest to highest (top). Map of corresponding river herring median Q index by statistical area grouped by quantiles (bottom). Scaled pink circles represent river herring bycatch (lbs) in observed hauls and sets from quarter 1 and 2 directed herring trips. A "+" signifies that an observed haul or set did not catch river herring. Directed herring trips are defined as 2,000 lbs of kept Atlantic herring on a trip. Sources: NMFS bottom-trawl surveys 1994-2008 and NEFOP Database 2005-2009.

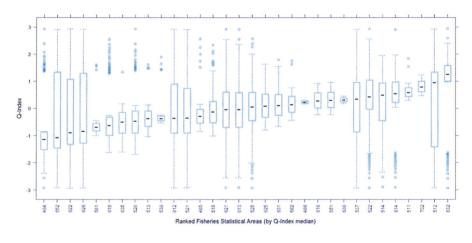
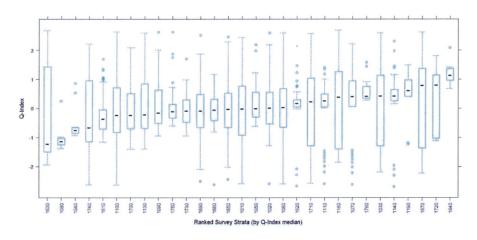



Figure A.11: Median Q index of river herring in fall research surveys by statistical area ranked from lowest to highest (top). Map of corresponding river herring median Q index by statistical area grouped by quantiles (bottom). Scaled pink circles represent river herring bycatch (lbs) in observed hauls and sets from quarter 3 and 4 directed herring trips. A "+" signifies that an observed haul or set did not catch river herring. Directed herring trips are defined as 2,000 lbs of kept Atlantic herring on a trip. Sources: NMFS bottom-trawl surveys 1994-2008 and NEFOP Database 2005-2009.

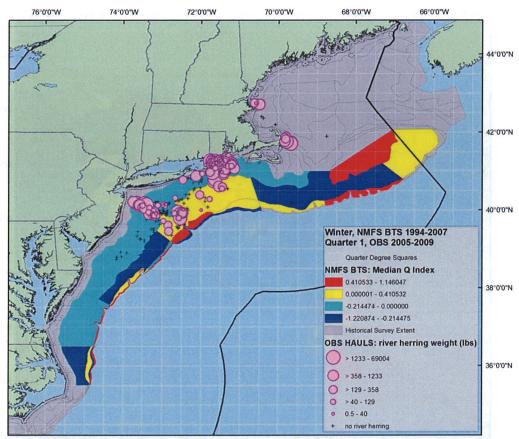
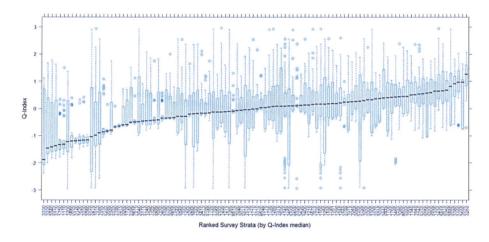



Figure A.12: Median Q index of river herring in winter research surveys by survey strata ranked from lowest to highest (top). Map of corresponding river herring median Q index by survey strata grouped by quantiles (bottom). Scaled pink circles represent river herring bycatch (lbs) in observed hauls and sets from quarter 1 directed herring trips. A "+" signifies that an observed haul or set did not catch river herring. Directed herring trips are defined as 2,000 lbs of kept Atlantic herring on a trip. Sources: NMFS bottom-trawl surveys 1994-2007 and NEFOP Database 2005-2009.

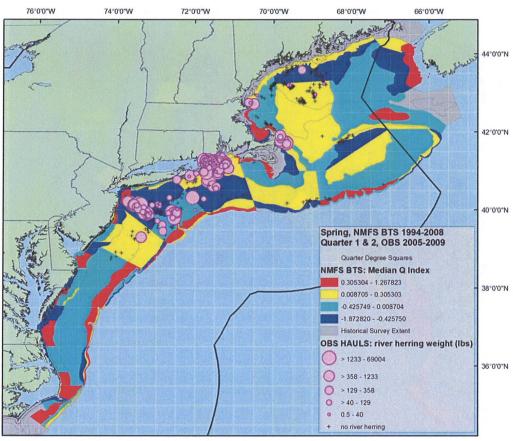
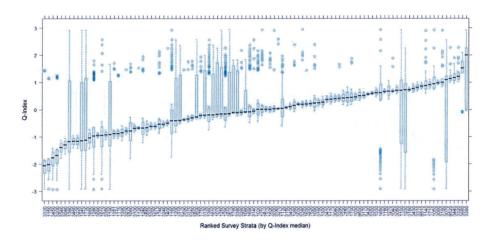



Figure A.13: Median Q index of river herring in spring research surveys by survey strata ranked from lowest to highest (top). Map of corresponding river herring median Q index by survey strata grouped by quantiles (bottom). Scaled pink circles represent river herring bycatch (lbs) in observed hauls and sets from quarter 1 and 2 directed herring trips. A "+" signifies that an observed haul or set did not catch river herring. Directed herring trips are defined as 2,000 lbs of kept Atlantic herring on a trip. Sources: NMFS bottom-trawl surveys 1994-2008 and NEFOP Database 2005-2009.

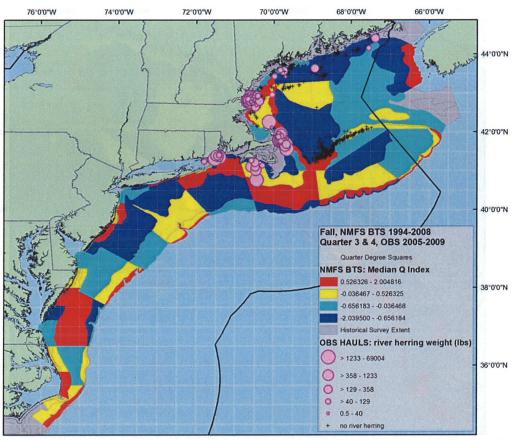


Figure A.14: Median Q index of river herring in fall research surveys by survey strata ranked from lowest to highest (top). Map of corresponding river herring median Q index by survey strata grouped by quantiles (bottom). Scaled pink circles represent river herring bycatch (lbs) in observed hauls and sets from quarter 3 and 4 directed herring trips. A "+" signifies that an observed haul or set did not catch river herring. Directed herring trips are defined as 2,000 lbs of kept Atlantic herring on a trip. Sources: NMFS bottom-trawl surveys 1994-2008 and NEFOP Database 2005-2009.